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 Large datasets 
◦ Amount of data increases constantly 

◦ “Five exabytes of data are generated every to days” 
(corresponds to the whole amount of data generated up to 2003) by Eric Schmidt  

 

 Facebook: 

◦ >800 million active users in Facebook,  
interacting with >1 billion objects 

◦ 2.5 petabytes of userdata per day! 

 

 

 How to explore, analyze such large datasets? 

1. MapReduce 

  Data Management 

MapReduce: Why? 
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 Processing 100 TB dataset 
 

 On 1 node 
◦ Scanning @ 50 MB/s = 23 days 

 On 1000 node cluster 
◦ Scanning @ 50 MB/s = 33 min 

 

 Current development 
◦ Companies often can't cope with logged user behavior and 

throw away data after some time  lost opportunities 
◦ Growing cloud-computing capacities 
◦ Price/performance advantage of low-end servers increases to 

about a factor of twelve 

 

1. MapReduce 

  Data Management 

MapReduce: Why? 
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 High-performance single machines 
◦ “Scale-up” with limits (hardware, software, costs) 

◦ Workloads today are beyond the capacity of any single machine 

◦ I/O Bottleneck 

 

 Parallel Databases 
◦ Fast and reliable 

◦ “Scale-out” restricted to some hundreds machines 

◦ Maintaining & administrations of parallel databases is hard 

 

 Specialized cluster of powerful machines 
◦ “specialized” = powerful hardware satisfying individual software needs  

◦ fast and reliable but also very expensive 

◦ For data-intensive applications: scaling “out” is superior to scaling 
“up”  performance gab insufficient to justify the price 

 

1. MapReduce 

  Data Management 

Data Management Approaches 

MapReduce Introduction 5 



 Clusters of commodity servers (with MapReduce) 

 
“Commodity servers” = not individually adjusted 

◦ e.g. 8 cores, 16G of RAM 

◦ Cost & energy efficiency 

 
MapReduce 

◦ Designed around clusters of commodity servers 

◦ Widely used in a broad range of applications  

◦ By many organizations 

◦ Scaling ”out”, e.g. Yahoo! uses > 40.000 machines 

◦ Easy to maintain & administrate 

 

 

 

 

 

 

1. MapReduce 

  Data Management 

Data Management Approaches (2) 
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 Problem: How to compute the PageRank for a crawled set 
  of websites on a cluster of machines? 

 

1. MapReduce 

   Distributed Processing 

 

Distributed Processing of Data 

 Main Challenges: 

◦ How to break up a large problem into smaller tasks, that can be 
executed in parallel? 

◦ How to assign tasks to machines?  

◦ How to partition and distribute data?  

◦ How to share intermediate results? 

◦ How to coordinate synchronization, scheduling, fault-tolerance? 

MapReduce Introduction 7 

MapReduce! 



 Scale “out”, not “up” 
◦ Large number of commodity servers 

 Assume failures are common 
◦ In a cluster of 10000 servers, expect 10 failures a day. 

 Move processing to the data 
◦ Take advantage of data locality and avoid to transfer large datasets 

through the network 

 Process data sequentially and avoid random access 
◦ Random disk access causes seek times 

 Hide system-level details from the application developer 
◦ Developers can focus on their problems instead of dealing with 

distributed programming issues  

 Seamless scalability 
◦ Scaling “out” improves the performance of an algorithm without any 

modifications 

MapReduce Introduction 8 
1. MapReduce 

   Distributed Processing 

Big ideas behind MapReduce 



 MapReduce 
◦ Popularized by Google & widely used 
◦ Algorithms that can be expressed as (or mapped to) a 

sequence of Map() and Reduce() functions are automatically 
parallelized by the framework 
  

 Distributed File System 
◦ Data is split into equally sized blocks and stored distributed 
◦ Clusters of commodity hardware 
 Fault tolerance by replication 

◦ Very large files / write-once, read-many pattern 
 

 Advantages 
◦ Partitioning + distribution of data 
◦ Parallelization and assigning of task 
◦ Scalability, fault-tolerance, scheduling,… 

1. MapReduce 

   Distributed Processing 

MapReduce 

That all is done 
automatically! 
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 At Google 
◦ Index construction for Google Search (replaced in 2010 by Caffeine) 

◦ Article clustering for Google News 
◦ Statistical machine translation 

 At Yahoo! 
◦ “Web map” powering Yahoo! Search 
◦ Spam detection for Yahoo! Mail 

 At Facebook 
◦ Data mining, Web log processing 
◦ SearchBox (with Cassandra) 
◦ Facebook Messages (with HBase) 
◦ Ad optimization 
◦ Spam detection 

1. MapReduce 

   Distributed Processing 

What is MapReduce used for? 
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 In research 
◦ Astronomical image analysis (Washington) 
◦ Bioinformatics (Maryland) 
◦ Analyzing Wikipedia conflicts (PARC) 
◦ Natural language processing (CMU)  
◦ Particle physics (Nebraska) 
◦ Ocean climate simulation (Washington) 
◦ Processing of Semantic Data (Freiburg) 
◦ <Your application here> 

 
 
 
  

1. MapReduce 

   Distributed Processing  

What is MapReduce used for? 
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b. MapReduce 
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a. MapReduce with Java 

b. Moving into the Cloud 
 

0. Agenda 

      

Agenda 
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2. Apache Hadoop 
“Open-source software for 
reliable, scalable, distributed 
computing” 

2. Hadoop 
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 Apache Hadoop 
◦ Well-known Open-Source implementation of 

◦ Google’s MapReduce & Google File System (GFS) paper  

◦ Enriched by many subprojects 

◦ Used by Yahoo, Facebook, Amazon, IBM, Last.fm, EBay … 

◦ Cloudera’s Distribution with VMWare images, tutorials and 
further patches 

2. Hadoop 

  

Apache Hadoop: Why? 
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2. Hadoop 

  

Hadoop Ecosystem 

PIG 
(Data Flow) 

Hive 
(SQL) 

MapReduce 
(Job Scheduling/Execution System) 

HBase 
(NoSQL) 

HDFS  
(Hadoop Distributed File System) 

Hadoop Common 
(supporting utilities, libraries) 
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MapReduce Introduction 
2. Hadoop 

  

Yahoo’s Hadoop Cluster 

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/aw-apachecon-eu-2009.pdf 
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 Files split into 64MB blocks 
 

 Blocks replicated across several 
DataNodes (usually 3) 

 

 Single NameNode stores metadata  

◦ file names, block locations, etc 

 

 Optimized for large files, 
sequential reads 

 

 Files are append-only 
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2. Hadoop 

  HDFS 

Hadoop Distributed File System 
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 Master & Slaves architecture 
 

 JobTracker schedules and 
manages jobs 

 

 TaskTracker executes individual 
map() and reduce() task on each 
cluster node 

 

 JobTracker and Namenode as 
well as TaskTrackers and 
DataNodes are placed on the 
same machines 
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2. Hadoop 

  Architecture 

Hadoop Architecture 

Slaves 

JobTracker 
+ 

NameNode 

TaskTracker 
+ 

DataNode 

Master 

TaskTracker 
+ 

DataNode 

TaskTracker 
+ 

DataNode 



(1) Map Phase 
◦ Raw data read and converted to key/value pairs 

◦ Map() function applied to any pair 
 

(2) Shuffle Phase 
◦ All key/value pairs are sorted and grouped by their keys 

 

(3) Reduce Phase 
◦ All values with a the same key are processed by within the 

same reduce() function 

 

2. Hadoop 

  MapReduce 

MapReduce Workflow 
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2. Hadoop 

  MapReduce  

MapReduce Workflow (2) 

 Steps of a MapReduce execution 

 

 

 

 

 

 
 

 

 Signatures 
◦ Map(): (in_key, in_value)  list (out_key, intermediate_value) 

◦ Reduce(): (out_key, list (intermediate_value))  list (out_value) 

 

 

 

split 1 

split 0 Map 

Map 

Map 

  
  

  
  

  
  

  
  
  

  
  
  

Reduce 

Reduce 

output 0 

output 1 

Map phase Shuffle & Sort Reduce phase 

split 2 

split 3 

split 4 

split 5 

Input 

(HDFS) 

Intermediate Results 

(Local) 

Output 

(HDFS) 
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 Every MapReduce program must specify a Mapper and 
typically a Reducer 
 

 The Mapper has a map() function that transforms input  
(key, value) pairs into any number of intermediate  
(out_key, intermediate_value) pairs 
 

 The Reducer has a reduce() function that transforms 
intermediate (out_key, list(intermediate_value)) 
aggregates into any number of output (value’) pairs 

 

  

2. Hadoop 

  MapReduce 

MapReduce Programming Model 
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 Single master controls job execution on multiple slaves 

◦ Master/Slave architecture 

 

 Mappers preferentially placed on same node or same rack as 
their input block 

◦ Utilize Data-locality  move computation to data 

◦ Minimizes network usage 

 

 Mappers save outputs to local disk before serving them to 
reducers 

◦ Allows recovery if a reducer crashes 

◦ Allows having more reducers than nodes 
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2. Hadoop 

  MapReduce 

MapReduce Execution Details 



 Problem: Given a document, we want to count the 
occurrences of any word 

 

 Input: 
◦ Document with words (e.g. Literature) 

 

 Output: 
◦ List of words and their occurrences, e.g. 

“Infrastructure” 12 
“the” 259 
… 
         

 

MapReduce Introduction 23 
2. Hadoop 

  MapReduce 

Word Count Example 
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2. Hadoop 

  MapReduce 

Word Count Execution 

the quick 

brown fox 

the fox ate 

the mouse 

how now 

brown cow 

Map 

Map 
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Reduce 

Reduce 
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the, 1 
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brown, 1 

ate, 1 

mouse, 1 

cow, 1 

Input Map Shuffle & Sort Reduce Output 



 A combiner is a local aggregation function for repeated 
keys produced by same Mapper 

 Works for associative functions like sum, count, max 

 

 Decreases size of intermediate data 

 

 Example: map-side aggregation for Word Count 
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2. Hadoop 

  MapReduce 

An Optimization: The Combiner 
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2. Hadoop 

  MapReduce 

Word Count with Combiner 

the quick 
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1. If a task crashes: 

◦ Retry on another node 

 OK for a map because it has no dependencies 

 OK for reduce because map outputs are on disk 

◦ If the same task fails repeatedly, fail the job or ignore 
that input block (user-controlled) 
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2. Hadoop 

  MapReduce 

Fault Tolerance in MapReduce 

 Note: For these fault tolerance features to work, 
your map and reduce tasks must be side-effect-
free 



2. If a node crashes: 

◦ Re-launch its current tasks on other nodes 

◦ Re-run any maps the node previously ran 

 Necessary because their output files were lost along 
with the crashed node 
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2. Hadoop 

  MapReduce 

Fault Tolerance in MapReduce 



3. If a task is going slowly (straggler): 

◦ Launch second copy of task on another node 
(“speculative execution”) 

◦ Take the output of whichever copy finishes first, and 
kill the other 

 

 Surprisingly important in large clusters 

◦ Stragglers occur frequently due to failing hardware, 
software bugs, misconfiguration, etc 

◦ Single straggler may noticeably slow down a job 
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2. Hadoop 

  MapReduce 

Fault Tolerance in MapReduce 



 Partitioners 
◦ Assign keys to reduces 

◦ Default: key.hashCode() % num_reducers 

 Grouping Comparators 
◦ Sort keys within reduces 

 Combiners 
◦ Local aggregation 

 Compression 
◦ Supported compression types: zlib, LZO,… 

 Counters (global) 
◦ Define new countable events 
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2. Hadoop 

  MapReduce 

Further handy tools 



 Zero Reduces 
◦ If no sorting or shuffling required 

◦ Set number of reduces to 0 

 Distributed File Cache 
◦ For storing read-only copies of data on local computers 
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2. Hadoop 

  MapReduce 

Further handy tools (2) 
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 Many parallel algorithms can be expressed by a 
series of MapReduce jobs 

 

 But MapReduce is fairly low-level:  
◦ must think about keys, values, partitioning, etc 

 

 Can we capture common “job building blocks”? 
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2. Hadoop 

  Pig Latin 

Pig (Latin): Why? 



 Started at Yahoo! Research 

 Runs about 30% of Yahoo!’s jobs 

 Features: 
◦ Expresses sequences of MapReduce jobs 

◦ Data model: nested “bags” of items 

◦ Provides relational (SQL) operators (JOIN, GROUP BY, etc.) 

◦ Easy to plug in Java functions 

◦ Pig Pen development environment for Eclipse 
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2. Hadoop 

  Pig Latin 

Pig (Latin) 



 Suppose you have  
user data in one file, 
page view data in 
another 

 and you need to find 
the top 5 most visited 
pages by users aged 
18 - 25 
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2. Hadoop 

  Pig Latin 

An Example Problem 

Load Users Load Pages 

Filter by age 

Join on name 

Group on url 

Count clicks 

Order by clicks 

Take top 5 

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt 
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2. Hadoop 

  Pig Latin 

In MapReduce 

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt 



Users    = load ‘users’ as (name, age); 
Filtered = filter Users by  
                  age >= 18 and age <= 25;  
Pages    = load ‘pages’ as (user, url); 
Joined   = join Filtered by name, Pages by user; 
Grouped  = group Joined by url; 
Summed   = foreach Grouped generate group, 
                   count(Joined) as clicks; 
Sorted   = order Summed by clicks desc; 
Top5     = limit Sorted 5; 

 
store Top5 into ‘top5sites’; 

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt 

MapReduce Introduction 38 
2. Hadoop 

  Pig Latin 

In Pig Latin 
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2. Hadoop 

  Pig Latin 

Ease of Translation 
Notice how naturally the components of the  job translate into Pig Latin. 

Load Users Load Pages 

Filter by age 

Join on name 

Group on url 

Count clicks 

Order by clicks 

Take top 5 

Users = load … 
Filtered = filter …  
Pages = load … 
Joined = join … 
Grouped = group … 
Summed = … count()… 
Sorted = order … 
Top5 = limit … 

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt 
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2. Hadoop 

  Pig Latin 

Ease of Translation 

Load Users Load Pages 

Filter by age 

Join on name 

Group on url 

Count clicks 

Order by clicks 

Take top 5 

Users = load … 
Filtered = filter …  
Pages = load … 
Joined = join … 
Grouped = group … 
Summed = … count()… 
Sorted = order … 
Top5 = limit … 

Job 1 

Job 2 

Job 3 

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt 

Notice how naturally the components of the  job translate into Pig Latin. 
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 Developed at Facebook 

 Used for majority of Facebook jobs 

 Data Warehouse infrastructure that provides data 
summarization and ad hoc querying on top of 
Hadoop 
◦ MapReduce for execution 

◦ HDFS for storage 

 “Relational database” built on Hadoop 
◦ Maintains list of table schemas 

◦ SQL-like query language (HQL) 

◦ Supports table partitioning, clustering, complex 
data types, some optimizations 
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2. Hadoop 

  Hive 

Hive 



SELECT p.url, COUNT(1) as clicks  

FROM users u JOIN page_views p ON (u.name = p.user) 

WHERE u.age >= 18 AND u.age <= 25 

GROUP BY p.url 

ORDER BY clicks 

LIMIT 5; 
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2. Hadoop 

  Pig Latin 

Sample Hive Query 

 Find top 5 pages visited by users aged 18-25: 



 Clone of Big Table (Google) 

 Data is stored “Column-oriented” 

 Distributed over many servers 

 Layered over HDFS 

 Strong consistency (CAP Theorem) 

 Scalable up to billions of rows x millions of 
columns 

 

2. Hadoop 

  HBase 

HBase 
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 Sqoop 
◦ Tool designed to help users of large data import existing 

relational databases into their Hadoop cluster 

◦ Integrates with Hive 

 Zookeeper 
◦ High-performance coordination service for distributed 

applications 

 Avro 
◦ Data serialization system 

 Chukwa 
◦ Data collection system 

◦ Displaying, monitoring and analyzing log files 

 

2. Hadoop 

  others 

And many others … 
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 By providing a data-parallel programming model, 
MapReduce can control job execution in useful ways: 

◦ Automatic division of job into tasks 

◦ Automatic partition and distribution of data 

◦ Automatic placement of computation near data 

◦ Recovery from failures & stragglers 

 

 Hadoop, an open source implementation of 
MapReduce, enriched by many useful subprojects 

 

 User focuses on application, not on complexity of 
distributed computing 
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2. Hadoop 

   

Takeaways 
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3. Programming MapReduce 
First steps with Hadoop 

3. Programming 
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 Hadoop Distributions 
◦ Apache Hadoop 

◦ Cloudera’s Hadoop Distribution (recommended) 

◦ … 
 

 Installing Hadoop on Linux 
◦ Follow CDH3 Installation Guide 

 Hadoop within a Virtual Machine 
◦ Cloudera's Hadoop Demo VMWare Image 

◦ Ready to use Hadoop Environment 

 Hadoop in the Cloud 
◦ Amazon’s Elastic MapReduce 

3. Programming 

   

Getting started with Hadoop 
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 Since Hadoop 0.20 
◦ OLD: org.apache.hadoop.mapred.* 

◦ NEW: org.apache.hadoop.mapreduce.*  

 

 Note 
◦ Many available examples are written using the old API 

◦ One should not mix both 

◦ Strongly recommended: new API! 
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3. Programming 

   

New MapReduce API 
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3. Programming 

  Running Jobs 

Web Interfaces: HUE 



MapReduce Introduction 56 
3. Programming 

  Running Jobs 

Web Interfaces: JobTracker 

http://masterIP:50030/jobtracker.jsp 
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3. Programming 

  Running Jobs 

Web Interfaces: NameNode 

http://masterIP:50070/dfshealth.jsp 



1. Why MapReduce? 

a. Comparison of Data Management Approaches 

b. Distributed Processing of Data 

2. Apache Hadoop 

a. HDFS 

b. MapReduce 

c. Pig 

d. Hive 

e. HBase 

3. Programming MapReduce 

a. MapReduce with Java 

b. Moving into the Cloud 
 

0. Agenda 

      

Agenda 

MapReduce Introduction 58 



 Provides a web-based interface and command-line 
tools for running Hadoop jobs on Amazon EC2 

 Data stored in Amazon S3 

 Monitors job and shuts down machines after use 

 Small extra charge on top of EC2 pricing 
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3. Programming 

  Elastic MapReduce 

Amazon Elastic MapReduce 
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3. Programming 

  Elastic MapReduce 

Elastic MapReduce Workflow 
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3. Programming 

  Elastic MapReduce 

Elastic MapReduce Workflow 
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3. Programming 

  Elastic MapReduce 

Elastic MapReduce Workflow 
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3. Programming 

  Elastic MapReduce 

Elastic MapReduce Workflow 



 MapReduce programming model hides the 
complexity of work distribution and fault tolerance 
 

 Principal design philosophies: 
◦ Make it scalable, so you can add hardware easily 
◦ Make it cheap, lowering hardware, programming and admin 

costs 
 

 MapReduce is not suitable for all problems, but 
when it works, it may save you quite a bit of time 
 

 Cloud computing or Cloudera makes it 
straightforward to start using Hadoop at scale 
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4. Conclusion 

   

Takeaways #2 



 Hadoop Cluster with 10 machines & 30 TB Storage 
 

 Distributed Processing of Semantic Data 

◦ Storing strategies for RDF Graphs in HDFS, HBase, Cassandra 

◦ Mapping SPARQL queries to PIG or directly MapReduce 

◦ Executing Path queries with PIG or directly MapReduce for 
investigating e.g. social networks 

 

4. Conclusion 

   

Research@DBIS 
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 Hadoop 
◦ http://hadoop.apache.org/core/  

 Pig 
◦ http://hadoop.apache.org/pig 

 Hive 
◦ http://hadoop.apache.org/hive 

 Cloudera’s Distribution 
◦ http://www.cloudera.com/ 

 Video tutorials 
◦ http://www.cloudera.com/hadoop-training  

 Amazon Web Services 
◦ http://aws.amazon.com/ 
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4. Resources 

   

Resources 

http://hadoop.apache.org/core/
http://hadoop.apache.org/pig
http://hadoop.apache.org/hive
http://www.cloudera.com/
http://www.cloudera.com/
http://www.cloudera.com/
http://www.cloudera.com/hadoop-training
http://www.cloudera.com/hadoop-training
http://www.cloudera.com/hadoop-training
http://www.cloudera.com/hadoop-training
http://aws.amazon.com/


 Hadoop: The Definitive Guide, Second Edition 
◦ Tom White 

◦ O'Reilly Media, 2010 

 Data-Intensive Text Processing with MapReduce 
◦ Jimmy Lin, Chris Dyer, Graeme Hirst 

◦ Morgan and Claypool Publishers, 2010 

 Cluster Computing and MapReduce Lecture Series 
◦ Google, 2007: Available on Youtube 

 Verarbeiten großer Datenmengen mit Hadoop 
◦ Oliver Fischer 

◦ Heise Developer, 2010: Online 
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4. Resources 

   

Resources (2) 



New MapReduce API 
Additional slides 
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X. MapReduce 

  New API 



 Methods can throw InterruptedException as well 
as IOException 

 Configuration instead of JobConf Objekt 

 

 Library classes are moved to mapreduce.lib 
verschoben 
◦ {input, map, output, partition, reduce}.* 
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X. MapReduce 

  New API 

New API: Top Level Changes 



 Map funktion 
◦ map (K1 key, V1 value,  
    OutputCollector<K2,V2> output,  
     Reporter reporter) 

◦ map(K1 key, V1 value, Context context) 
 

 Close 
◦ Close() 
◦ cleanup(Context context) 
 

 Output 
◦ Output.collect(K,V) 
◦ Context.write(K,V) 
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Mapper 

old API 

new API 



 Using mapreduce.Mapper 

◦ void run (RecordReader<K1,V1> input, 
   OutputCollector<K2,V2> output, 
   Reporter reporter) 

◦ void run (Context context) 
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MapRunnable 



 Reduce funktion 

◦ void reduce (K2, Iterator<V2> values,  
      OutputCollector<K3,V3> output) 

◦ void reduce (K2, Iterable<V2> values,  
      Context context) 

 

 Iteration 
◦ while (values.hasNext() { 
  V2 value = values.next(); … } 

◦ for (V2 value: values) { … } 
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Reducer & Combiner 



 JobConf + JobClient are replaced with Job 
 

 Job Constructor 
◦ job = new JobConf(conf, MyMapper.class) 
job.setJobName(„job name“) 

◦ job = new Job(conf, „job name“) 

◦ job.setJarByClass(MyMapper.class) 
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Submitting Jobs 



 Further Properties 
◦ Job has getConfiguration 

◦ FileInputFormat in mapreduce.lib.input 

◦ FileOutputFormat in mapreduce.lib.output 

 

 Ausführung 

◦ JobClient.runJob(job) 

◦ System.exit(job.waitForCompletion(true)?0:1) 
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Submitting Jobs (2) 


