
MapReduce
Introduction and Hadoop Overview

Lab Course: Databases & Cloud Computing

SS 2012

Martin Przyjaciel-Zablocki
Alexander Schätzle
Georg Lausen

University of Freiburg
Databases & Information Systems

13 June 2012

1. Why MapReduce?

a. Data Management Approaches

b. Distributed Processing of Data

2. Apache Hadoop

a. HDFS

b. MapReduce

c. Pig

d. Hive

e. HBase

3. Programming MapReduce

a. MapReduce with Java

b. Moving into the Cloud

0. Agenda

Agenda

MapReduce Introduction 2

 Large datasets
◦ Amount of data increases constantly

◦ “Five exabytes of data are generated every to days”
(corresponds to the whole amount of data generated up to 2003) by Eric Schmidt

 Facebook:

◦ >800 million active users in Facebook,
interacting with >1 billion objects

◦ 2.5 petabytes of userdata per day!

 How to explore, analyze such large datasets?

1. MapReduce

 Data Management

MapReduce: Why?

MapReduce Introduction 3

 Processing 100 TB dataset

 On 1 node
◦ Scanning @ 50 MB/s = 23 days

 On 1000 node cluster
◦ Scanning @ 50 MB/s = 33 min

 Current development
◦ Companies often can't cope with logged user behavior and

throw away data after some time  lost opportunities
◦ Growing cloud-computing capacities
◦ Price/performance advantage of low-end servers increases to

about a factor of twelve

1. MapReduce

 Data Management

MapReduce: Why?

MapReduce Introduction 4

 High-performance single machines
◦ “Scale-up” with limits (hardware, software, costs)

◦ Workloads today are beyond the capacity of any single machine

◦ I/O Bottleneck

 Parallel Databases
◦ Fast and reliable

◦ “Scale-out” restricted to some hundreds machines

◦ Maintaining & administrations of parallel databases is hard

 Specialized cluster of powerful machines
◦ “specialized” = powerful hardware satisfying individual software needs

◦ fast and reliable but also very expensive

◦ For data-intensive applications: scaling “out” is superior to scaling
“up”  performance gab insufficient to justify the price

1. MapReduce

 Data Management

Data Management Approaches

MapReduce Introduction 5

 Clusters of commodity servers (with MapReduce)

“Commodity servers” = not individually adjusted

◦ e.g. 8 cores, 16G of RAM

◦ Cost & energy efficiency

MapReduce

◦ Designed around clusters of commodity servers

◦ Widely used in a broad range of applications

◦ By many organizations

◦ Scaling ”out”, e.g. Yahoo! uses > 40.000 machines

◦ Easy to maintain & administrate

1. MapReduce

 Data Management

Data Management Approaches (2)

MapReduce Introduction 6

 Problem: How to compute the PageRank for a crawled set
 of websites on a cluster of machines?

1. MapReduce

 Distributed Processing

Distributed Processing of Data

 Main Challenges:

◦ How to break up a large problem into smaller tasks, that can be
executed in parallel?

◦ How to assign tasks to machines?

◦ How to partition and distribute data?

◦ How to share intermediate results?

◦ How to coordinate synchronization, scheduling, fault-tolerance?

MapReduce Introduction 7

MapReduce!

 Scale “out”, not “up”
◦ Large number of commodity servers

 Assume failures are common
◦ In a cluster of 10000 servers, expect 10 failures a day.

 Move processing to the data
◦ Take advantage of data locality and avoid to transfer large datasets

through the network

 Process data sequentially and avoid random access
◦ Random disk access causes seek times

 Hide system-level details from the application developer
◦ Developers can focus on their problems instead of dealing with

distributed programming issues

 Seamless scalability
◦ Scaling “out” improves the performance of an algorithm without any

modifications

MapReduce Introduction 8
1. MapReduce

 Distributed Processing

Big ideas behind MapReduce

 MapReduce
◦ Popularized by Google & widely used
◦ Algorithms that can be expressed as (or mapped to) a

sequence of Map() and Reduce() functions are automatically
parallelized by the framework

 Distributed File System
◦ Data is split into equally sized blocks and stored distributed
◦ Clusters of commodity hardware
 Fault tolerance by replication

◦ Very large files / write-once, read-many pattern

 Advantages
◦ Partitioning + distribution of data
◦ Parallelization and assigning of task
◦ Scalability, fault-tolerance, scheduling,…

1. MapReduce

 Distributed Processing

MapReduce

That all is done
automatically!

MapReduce Introduction 9

 At Google
◦ Index construction for Google Search (replaced in 2010 by Caffeine)

◦ Article clustering for Google News
◦ Statistical machine translation

 At Yahoo!
◦ “Web map” powering Yahoo! Search
◦ Spam detection for Yahoo! Mail

 At Facebook
◦ Data mining, Web log processing
◦ SearchBox (with Cassandra)
◦ Facebook Messages (with HBase)
◦ Ad optimization
◦ Spam detection

1. MapReduce

 Distributed Processing

What is MapReduce used for?

MapReduce Introduction 10

 In research
◦ Astronomical image analysis (Washington)
◦ Bioinformatics (Maryland)
◦ Analyzing Wikipedia conflicts (PARC)
◦ Natural language processing (CMU)
◦ Particle physics (Nebraska)
◦ Ocean climate simulation (Washington)
◦ Processing of Semantic Data (Freiburg)
◦ <Your application here>

1. MapReduce

 Distributed Processing

What is MapReduce used for?

MapReduce Introduction 11

1. Why MapReduce?

a. Data Management Approaches

b. Distributed Processing of Data

2. Apache Hadoop

a. HDFS

b. MapReduce

c. Pig

d. Hive

e. HBase

3. Programming MapReduce

a. MapReduce with Java

b. Moving into the Cloud

0. Agenda

Agenda

MapReduce Introduction 12

2. Apache Hadoop
“Open-source software for
reliable, scalable, distributed
computing”

2. Hadoop

MapReduce Introduction 13

 Apache Hadoop
◦ Well-known Open-Source implementation of

◦ Google’s MapReduce & Google File System (GFS) paper

◦ Enriched by many subprojects

◦ Used by Yahoo, Facebook, Amazon, IBM, Last.fm, EBay …

◦ Cloudera’s Distribution with VMWare images, tutorials and
further patches

2. Hadoop

Apache Hadoop: Why?

MapReduce Introduction 14

2. Hadoop

Hadoop Ecosystem

PIG
(Data Flow)

Hive
(SQL)

MapReduce
(Job Scheduling/Execution System)

HBase
(NoSQL)

HDFS
(Hadoop Distributed File System)

Hadoop Common
(supporting utilities, libraries)

Z
o
o
K

e
e
p
e
r

(C
o
o
rd

in
a
ti

o
n
)

A
v
ro

(S

e
ri

a
li
z
a
ti

o
n
)

Chukwa
(Managing)

MapReduce Introduction 15

MapReduce Introduction
2. Hadoop

Yahoo’s Hadoop Cluster

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/aw-apachecon-eu-2009.pdf

16

 Files split into 64MB blocks

 Blocks replicated across several
DataNodes (usually 3)

 Single NameNode stores metadata

◦ file names, block locations, etc

 Optimized for large files,
sequential reads

 Files are append-only

MapReduce Introduction 17
2. Hadoop

 HDFS

Hadoop Distributed File System

NameNode

DataNodes

1

2

3

4

1

2

4

2

1

3

1

4

3

3

2

4

File1

 Master & Slaves architecture

 JobTracker schedules and
manages jobs

 TaskTracker executes individual
map() and reduce() task on each
cluster node

 JobTracker and Namenode as
well as TaskTrackers and
DataNodes are placed on the
same machines

MapReduce Introduction 18
2. Hadoop

 Architecture

Hadoop Architecture

Slaves

JobTracker
+

NameNode

TaskTracker
+

DataNode

Master

TaskTracker
+

DataNode

TaskTracker
+

DataNode

(1) Map Phase
◦ Raw data read and converted to key/value pairs

◦ Map() function applied to any pair

(2) Shuffle Phase
◦ All key/value pairs are sorted and grouped by their keys

(3) Reduce Phase
◦ All values with a the same key are processed by within the

same reduce() function

2. Hadoop

 MapReduce

MapReduce Workflow

MapReduce Introduction 19

2. Hadoop

 MapReduce

MapReduce Workflow (2)

 Steps of a MapReduce execution

 Signatures
◦ Map(): (in_key, in_value)  list (out_key, intermediate_value)

◦ Reduce(): (out_key, list (intermediate_value))  list (out_value)

split 1

split 0 Map

Map

Map

Reduce

Reduce

output 0

output 1

Map phase Shuffle & Sort Reduce phase

split 2

split 3

split 4

split 5

Input

(HDFS)

Intermediate Results

(Local)

Output

(HDFS)

MapReduce Introduction 20

 Every MapReduce program must specify a Mapper and
typically a Reducer

 The Mapper has a map() function that transforms input
(key, value) pairs into any number of intermediate
(out_key, intermediate_value) pairs

 The Reducer has a reduce() function that transforms
intermediate (out_key, list(intermediate_value))
aggregates into any number of output (value’) pairs

2. Hadoop

 MapReduce

MapReduce Programming Model

MapReduce Introduction 21

 Single master controls job execution on multiple slaves

◦ Master/Slave architecture

 Mappers preferentially placed on same node or same rack as
their input block

◦ Utilize Data-locality  move computation to data

◦ Minimizes network usage

 Mappers save outputs to local disk before serving them to
reducers

◦ Allows recovery if a reducer crashes

◦ Allows having more reducers than nodes

MapReduce Introduction 22
2. Hadoop

 MapReduce

MapReduce Execution Details

 Problem: Given a document, we want to count the
occurrences of any word

 Input:
◦ Document with words (e.g. Literature)

 Output:
◦ List of words and their occurrences, e.g.

“Infrastructure” 12
“the” 259
…

MapReduce Introduction 23
2. Hadoop

 MapReduce

Word Count Example

MapReduce Introduction 25
2. Hadoop

 MapReduce

Word Count Execution

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1

fox, 1

quick, 1

the, 1

fox, 1

the, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

 A combiner is a local aggregation function for repeated
keys produced by same Mapper

 Works for associative functions like sum, count, max

 Decreases size of intermediate data

 Example: map-side aggregation for Word Count

MapReduce Introduction 26
2. Hadoop

 MapReduce

An Optimization: The Combiner

MapReduce Introduction 27
2. Hadoop

 MapReduce

Word Count with Combiner

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1

fox, 1

quick, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

the, 2

fox, 1

1. If a task crashes:

◦ Retry on another node

 OK for a map because it has no dependencies

 OK for reduce because map outputs are on disk

◦ If the same task fails repeatedly, fail the job or ignore
that input block (user-controlled)

MapReduce Introduction 28
2. Hadoop

 MapReduce

Fault Tolerance in MapReduce

 Note: For these fault tolerance features to work,
your map and reduce tasks must be side-effect-
free

2. If a node crashes:

◦ Re-launch its current tasks on other nodes

◦ Re-run any maps the node previously ran

 Necessary because their output files were lost along
with the crashed node

MapReduce Introduction 29
2. Hadoop

 MapReduce

Fault Tolerance in MapReduce

3. If a task is going slowly (straggler):

◦ Launch second copy of task on another node
(“speculative execution”)

◦ Take the output of whichever copy finishes first, and
kill the other

 Surprisingly important in large clusters

◦ Stragglers occur frequently due to failing hardware,
software bugs, misconfiguration, etc

◦ Single straggler may noticeably slow down a job

MapReduce Introduction 30
2. Hadoop

 MapReduce

Fault Tolerance in MapReduce

 Partitioners
◦ Assign keys to reduces

◦ Default: key.hashCode() % num_reducers

 Grouping Comparators
◦ Sort keys within reduces

 Combiners
◦ Local aggregation

 Compression
◦ Supported compression types: zlib, LZO,…

 Counters (global)
◦ Define new countable events

MapReduce Introduction 31
2. Hadoop

 MapReduce

Further handy tools

 Zero Reduces
◦ If no sorting or shuffling required

◦ Set number of reduces to 0

 Distributed File Cache
◦ For storing read-only copies of data on local computers

MapReduce Introduction 32
2. Hadoop

 MapReduce

Further handy tools (2)

1. Why MapReduce?

a. Data Management Approaches

b. Distributed Processing of Data

2. Apache Hadoop

a. HDFS

b. MapReduce

c. Pig

d. Hive

e. HBase

3. Programming MapReduce

a. MapReduce with Java

b. Moving into the Cloud

0. Agenda

Agenda

PIG
(Data Flow)

Hive
(SQL)

MapReduce
(Job Scheduling/Execution System)

HBase
(NoSQL)

HDFS
(Hadoop Distributed File System)

Hadoop Common
(supporting utilities, libraries)

Z
o
o
K

e
e
p
e
r

(C
o
o
rd

in
a
ti

o
n
)

A
v
ro

(S

e
ri

a
li
z
a
ti

o
n
)

Chukwa
(Managing)

MapReduce Introduction 33

 Many parallel algorithms can be expressed by a
series of MapReduce jobs

 But MapReduce is fairly low-level:
◦ must think about keys, values, partitioning, etc

 Can we capture common “job building blocks”?

MapReduce Introduction 34
2. Hadoop

 Pig Latin

Pig (Latin): Why?

 Started at Yahoo! Research

 Runs about 30% of Yahoo!’s jobs

 Features:
◦ Expresses sequences of MapReduce jobs

◦ Data model: nested “bags” of items

◦ Provides relational (SQL) operators (JOIN, GROUP BY, etc.)

◦ Easy to plug in Java functions

◦ Pig Pen development environment for Eclipse

MapReduce Introduction 35
2. Hadoop

 Pig Latin

Pig (Latin)

 Suppose you have
user data in one file,
page view data in
another

 and you need to find
the top 5 most visited
pages by users aged
18 - 25

MapReduce Introduction 36
2. Hadoop

 Pig Latin

An Example Problem

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

MapReduce Introduction 37
2. Hadoop

 Pig Latin

In MapReduce

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Users = load ‘users’ as (name, age);
Filtered = filter Users by
 age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Joined = join Filtered by name, Pages by user;
Grouped = group Joined by url;
Summed = foreach Grouped generate group,
 count(Joined) as clicks;
Sorted = order Summed by clicks desc;
Top5 = limit Sorted 5;

store Top5 into ‘top5sites’;

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

MapReduce Introduction 38
2. Hadoop

 Pig Latin

In Pig Latin

MapReduce Introduction 39
2. Hadoop

 Pig Latin

Ease of Translation
Notice how naturally the components of the job translate into Pig Latin.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Filtered = filter …
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

MapReduce Introduction 40
2. Hadoop

 Pig Latin

Ease of Translation

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Filtered = filter …
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

Job 1

Job 2

Job 3

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Notice how naturally the components of the job translate into Pig Latin.

1. Why MapReduce?

a. Comparison of Data Management Approaches

b. Distributed Processing of Data

2. Apache Hadoop

a. HDFS

b. MapReduce

c. Pig

d. Hive

e. HBase

3. Programming MapReduce

a. MapReduce with Java

b. Moving into the Cloud

0. Agenda

Agenda

PIG
(Data Flow)

Hive
(SQL)

MapReduce
(Job Scheduling/Execution System)

HBase
(NoSQL)

HDFS
(Hadoop Distributed File System)

Hadoop Common
(supporting utilities, libraries)

Z
o
o
K

e
e
p
e
r

(C
o
o
rd

in
a
ti

o
n
)

A
v
ro

(S

e
ri

a
li
z
a
ti

o
n
)

Chukwa
(Managing)

MapReduce Introduction 41

 Developed at Facebook

 Used for majority of Facebook jobs

 Data Warehouse infrastructure that provides data
summarization and ad hoc querying on top of
Hadoop
◦ MapReduce for execution

◦ HDFS for storage

 “Relational database” built on Hadoop
◦ Maintains list of table schemas

◦ SQL-like query language (HQL)

◦ Supports table partitioning, clustering, complex
data types, some optimizations

MapReduce Introduction 42
2. Hadoop

 Hive

Hive

SELECT p.url, COUNT(1) as clicks

FROM users u JOIN page_views p ON (u.name = p.user)

WHERE u.age >= 18 AND u.age <= 25

GROUP BY p.url

ORDER BY clicks

LIMIT 5;

MapReduce Introduction 43
2. Hadoop

 Pig Latin

Sample Hive Query

 Find top 5 pages visited by users aged 18-25:

 Clone of Big Table (Google)

 Data is stored “Column-oriented”

 Distributed over many servers

 Layered over HDFS

 Strong consistency (CAP Theorem)

 Scalable up to billions of rows x millions of
columns

2. Hadoop

 HBase

HBase

MapReduce Introduction 44

 Sqoop
◦ Tool designed to help users of large data import existing

relational databases into their Hadoop cluster

◦ Integrates with Hive

 Zookeeper
◦ High-performance coordination service for distributed

applications

 Avro
◦ Data serialization system

 Chukwa
◦ Data collection system

◦ Displaying, monitoring and analyzing log files

2. Hadoop

 others

And many others …

MapReduce Introduction 45

 By providing a data-parallel programming model,
MapReduce can control job execution in useful ways:

◦ Automatic division of job into tasks

◦ Automatic partition and distribution of data

◦ Automatic placement of computation near data

◦ Recovery from failures & stragglers

 Hadoop, an open source implementation of
MapReduce, enriched by many useful subprojects

 User focuses on application, not on complexity of
distributed computing

MapReduce Introduction 46
2. Hadoop

Takeaways

1. Why MapReduce?

a. Comparison of Data Management Approaches

b. Distributed Processing of Data

2. Apache Hadoop

a. HDFS

b. MapReduce

c. Pig

d. Hive

e. HBase

3. Programming MapReduce

a. MapReduce with Java

b. Moving into the Cloud

0. Agenda

Agenda

MapReduce Introduction 47

3. Programming MapReduce
First steps with Hadoop

3. Programming

MapReduce Introduction 48

 Hadoop Distributions
◦ Apache Hadoop

◦ Cloudera’s Hadoop Distribution (recommended)

◦ …

 Installing Hadoop on Linux
◦ Follow CDH3 Installation Guide

 Hadoop within a Virtual Machine
◦ Cloudera's Hadoop Demo VMWare Image

◦ Ready to use Hadoop Environment

 Hadoop in the Cloud
◦ Amazon’s Elastic MapReduce

3. Programming

Getting started with Hadoop

MapReduce Introduction 49

 Since Hadoop 0.20
◦ OLD: org.apache.hadoop.mapred.*

◦ NEW: org.apache.hadoop.mapreduce.*

 Note
◦ Many available examples are written using the old API

◦ One should not mix both

◦ Strongly recommended: new API!

MapReduce Introduction 50
3. Programming

New MapReduce API

MapReduce Introduction 55
3. Programming

 Running Jobs

Web Interfaces: HUE

MapReduce Introduction 56
3. Programming

 Running Jobs

Web Interfaces: JobTracker

http://masterIP:50030/jobtracker.jsp

MapReduce Introduction 57
3. Programming

 Running Jobs

Web Interfaces: NameNode

http://masterIP:50070/dfshealth.jsp

1. Why MapReduce?

a. Comparison of Data Management Approaches

b. Distributed Processing of Data

2. Apache Hadoop

a. HDFS

b. MapReduce

c. Pig

d. Hive

e. HBase

3. Programming MapReduce

a. MapReduce with Java

b. Moving into the Cloud

0. Agenda

Agenda

MapReduce Introduction 58

 Provides a web-based interface and command-line
tools for running Hadoop jobs on Amazon EC2

 Data stored in Amazon S3

 Monitors job and shuts down machines after use

 Small extra charge on top of EC2 pricing

MapReduce Introduction 59
3. Programming

 Elastic MapReduce

Amazon Elastic MapReduce

MapReduce Introduction 60
3. Programming

 Elastic MapReduce

Elastic MapReduce Workflow

MapReduce Introduction 61
3. Programming

 Elastic MapReduce

Elastic MapReduce Workflow

MapReduce Introduction 62
3. Programming

 Elastic MapReduce

Elastic MapReduce Workflow

MapReduce Introduction 63
3. Programming

 Elastic MapReduce

Elastic MapReduce Workflow

 MapReduce programming model hides the
complexity of work distribution and fault tolerance

 Principal design philosophies:
◦ Make it scalable, so you can add hardware easily
◦ Make it cheap, lowering hardware, programming and admin

costs

 MapReduce is not suitable for all problems, but
when it works, it may save you quite a bit of time

 Cloud computing or Cloudera makes it
straightforward to start using Hadoop at scale

MapReduce Introduction 64
4. Conclusion

Takeaways #2

 Hadoop Cluster with 10 machines & 30 TB Storage

 Distributed Processing of Semantic Data

◦ Storing strategies for RDF Graphs in HDFS, HBase, Cassandra

◦ Mapping SPARQL queries to PIG or directly MapReduce

◦ Executing Path queries with PIG or directly MapReduce for
investigating e.g. social networks

4. Conclusion

Research@DBIS

MapReduce Introduction 65

 Hadoop
◦ http://hadoop.apache.org/core/

 Pig
◦ http://hadoop.apache.org/pig

 Hive
◦ http://hadoop.apache.org/hive

 Cloudera’s Distribution
◦ http://www.cloudera.com/

 Video tutorials
◦ http://www.cloudera.com/hadoop-training

 Amazon Web Services
◦ http://aws.amazon.com/

MapReduce Introduction 66
4. Resources

Resources

http://hadoop.apache.org/core/
http://hadoop.apache.org/pig
http://hadoop.apache.org/hive
http://www.cloudera.com/
http://www.cloudera.com/
http://www.cloudera.com/
http://www.cloudera.com/hadoop-training
http://www.cloudera.com/hadoop-training
http://www.cloudera.com/hadoop-training
http://www.cloudera.com/hadoop-training
http://aws.amazon.com/

 Hadoop: The Definitive Guide, Second Edition
◦ Tom White

◦ O'Reilly Media, 2010

 Data-Intensive Text Processing with MapReduce
◦ Jimmy Lin, Chris Dyer, Graeme Hirst

◦ Morgan and Claypool Publishers, 2010

 Cluster Computing and MapReduce Lecture Series
◦ Google, 2007: Available on Youtube

 Verarbeiten großer Datenmengen mit Hadoop
◦ Oliver Fischer

◦ Heise Developer, 2010: Online

MapReduce Introduction 67

4. Resources

Resources (2)

New MapReduce API
Additional slides

MapReduce Introduction 68
X. MapReduce

 New API

 Methods can throw InterruptedException as well
as IOException

 Configuration instead of JobConf Objekt

 Library classes are moved to mapreduce.lib
verschoben
◦ {input, map, output, partition, reduce}.*

MapReduce Introduction 69
X. MapReduce

 New API

New API: Top Level Changes

 Map funktion
◦ map (K1 key, V1 value,
 OutputCollector<K2,V2> output,
 Reporter reporter)

◦ map(K1 key, V1 value, Context context)

 Close
◦ Close()
◦ cleanup(Context context)

 Output
◦ Output.collect(K,V)
◦ Context.write(K,V)

MapReduce Introduction 70
X. MapReduce

 New API

Mapper

old API

new API

 Using mapreduce.Mapper

◦ void run (RecordReader<K1,V1> input,
 OutputCollector<K2,V2> output,
 Reporter reporter)

◦ void run (Context context)

MapReduce Introduction 71
X. MapReduce

 New API

MapRunnable

 Reduce funktion

◦ void reduce (K2, Iterator<V2> values,
 OutputCollector<K3,V3> output)

◦ void reduce (K2, Iterable<V2> values,
 Context context)

 Iteration
◦ while (values.hasNext() {
 V2 value = values.next(); … }

◦ for (V2 value: values) { … }

MapReduce Introduction 72
X. MapReduce

 New API

Reducer & Combiner

 JobConf + JobClient are replaced with Job

 Job Constructor
◦ job = new JobConf(conf, MyMapper.class)
job.setJobName(„job name“)

◦ job = new Job(conf, „job name“)

◦ job.setJarByClass(MyMapper.class)

MapReduce Introduction 73
X. MapReduce

 New API

Submitting Jobs

 Further Properties
◦ Job has getConfiguration

◦ FileInputFormat in mapreduce.lib.input

◦ FileOutputFormat in mapreduce.lib.output

 Ausführung

◦ JobClient.runJob(job)

◦ System.exit(job.waitForCompletion(true)?0:1)

MapReduce Introduction 74
X. MapReduce

 New API

Submitting Jobs (2)

