13 June 2012

MapReduce

Introduction and Hadoop Overview

Lab Course: Databases & Cloud Computing
SS 2012

Martin Przyjaciel-Zablocki
Alexander Schatzle

Georg Lausen
University of Freiburg
Databases & Information Systems IF

INFORMATIK
FREIBURG

UNI

FUR

FREIBURG

Agenda

1. Why MapReduce?

a. Data Management Approaches
b. Distributed Processing of Data

2. Apache Hadoop

a. HDFS

b. MapReduce
c. Pig

d. Hive

e. HBase

3. Programming MapReduce

a. MapReduce with Java
b. Moving into the Cloud

UNI
FREIBURG

MapReduce Introduction

2

MapReduce: Why?

» Large datasets
- Amount of data increases constantly

- “Five exabytes of data are generated every to days”
(corresponds to the whole amount of data generated up to 2003) by Eric Schmidt

» Facebook:

- >800 million active users in Facebook,
interacting with >1 billion objects

- 2.5 petabytes of userdata per day! facebook

» How to explore, analyze such large datasets?

Go ung

lost.fm

UNI

FREIBURG

MapReduce Introduction

3

MapReduce: Why?

» Processing 100 TB dataset

» On 1 node
- Scanning @ 50 MB/s = 23 days

» On 1000 node cluster
> Scanning @ 50 MB/s = 33 min

» Current development

- Companies often can't cope with logged user behavior and
throw away data after some time > lost opportunities

> Growing cloud-computing capacities
- Price/performance advantage of low-end servers increases to
about a factor of twelve

UNI
FREIBURG

MapReduce Introduction 4

Data Management Approaches

» High-performance single machines
> “Scale-up” with limits (hardware, software, costs)

- Workloads today are beyond the capacity of any single machine
> 1/0O Bottleneck

» Parallel Databases
- Fast and reliable
> “Scale-out” restricted to some hundreds machines
> Maintaining & administrations of parallel databases is hard

» Specialized cluster of powerful machines
- “specialized” = powerful hardware satisfying individual software needs
- fast and reliable but also very expensive

> For data-intensive applications: scaling “out” is superior to scaling
“up” = performance gab insufficient to justify the price

UNI
|

FREIBURG

MapReduce Introduction 5

Data Management Approaches (2)

» Clusters of commodity servers (with MapReduce)

“Commodity servers” = not individually adjusted
- e.g. 8 cores, 16G of RAM
- Cost & energy efficiency

MapReduce

- Designed around clusters of commodity servers

- Widely used in a broad range of applications

> By many organizations

> Scaling "out”, e.g. Yahoo! uses > 40.000 machines
- Easy to maintain & administrate

UNI
FREIBURG

MapReduce Introduction 6

UNI

FREIBURG

Distributed Processing of Data

» Problem: How to compute the PageRank for a crawled set
of websites on a cluster of machines?

MapReduce!

» Main Challenges:

- How to break up a large problem into smaller tasks, that can be
executed in parallel?

> How to assign tasks to machines?

- How to partition and distribute data?

- How to share intermediate results?

- How to coordinate synchronization, scheduling, fault-tolerance?

MapReduce Introduction

7

Big ideas behind MapReduce

Scale “out”, not “up”

> Large number of commodity servers

Assume failures are common

> In a cluster of 10000 servers, expect 10 failures a day.

Move processing to the data

- Take advantage of data locality and avoid to transfer large datasets
through the network

Process data sequentially and avoid random access
- Random disk access causes seek times

Hide system-level details from the application developer

- Developers can focus on their problems instead of dealing with
distributed programming issues

Seamless scalability

> Scaling “out” improves the performance of an algorithm without any
modifications

v

v

v

v

v

v

UNI
FREIBURG

MapReduce Introduction 8

MapReduce

» MapReduce
- Popularized by Google & widely used

> Algorithms that can be expressed as (or mapped to) a

sequence of Map() and Reduce() functions are automatically
parallelized by the framework

» Distributed File System

- Data is split into equally sized blocks and stored distributed
> Clusters of commodity hardware
- Fault tolerance by replication

- Very large files / write-once, read-many pattern

» Advantages
- Partitioning + distribution of data
- Parallelization and assigning of task
- Scalability, fault-tolerance, scheduling,...

That all is done
automatically!

UNI
FREIBURG

MapReduce Introduction

What is MapReduce used for?

» At Google

> Index construction for Google Search (replaced in 2010 by Caffeine)

- Article clustering for Google News ,
- Statistical machine translation GOU8[€

» At Yahoo!

- “Web map” powering Yahoo! Search

- Spam detection for Yahoo! Mail YAHOO'
» At Facebook

- Data mining, Web log processing

> SearchBox (with Cassandra)

- Facebook Messages (with HBase)

- Ad optimization

> Spam detection

UNI
FREIBURG

MapReduce Introduction 10

UNI

FREIBURG

What is MapReduce used for?

In research

- Astronomical image analysis (Washington)
- Bioinformatics (Maryland)

Analyzing Wikipedia conflicts (PARC)
Natural language processing (CMU)
Particle physics (Nebraska)

Ocean climate simulation (Washington)
Processing of Semantic Data (Freiburg)
<Your application here>

(@)

(0]

(@)

(0]

(@)

o

MapReduce Introduction 11

Agenda

1. Why MapReduce?

a. Data Management Approaches
b. Distributed Processing of Data

2. Apache Hadoop

a. HDFS

b. MapReduce
c. Pig

d. Hive

e. HBase

3. Programming MapReduce

a. MapReduce with Java
b. Moving into the Cloud

UNI
|

FREIBURG

MapReduce Introduction

12

2. Apache Hadoop

22 “Open-source software for
reliable, scalable, distributed
computing”

UNI
|

FREIBURG

MapReduce Introduction 13

Apache Hadoop: Why?

» Apache Hadoop
> Well-known Open-Source implementation of
- Google’s MapReduce & Google File System (GFS) paper
> Enriched by many subprojects
- Used by Yahoo, Facebook, Amazon, IBM, Last.fm, EBay ...

> Cloudera’s Distribution with VMWare images, tutorials and
further patches

UNI
|

FREIBURG

MapReduce Introduction 14

Hadoop Ecosystem

PIG Hive

(Data Flow) (SQL)

Chukwa
(Managing)
MapReduce

(Job Scheduling/Execution System)

Avro

(Serialization)

g BENE

(NoSQL)

(Coordination)

ZooKeeper

HDFS

(Hadoop Distributed File System)

Hadoop Common

(supporting utilities, libraries)

UNI

MapReduce Introduction 15

FREIBURG

UNI

FREIBURG

Yahoo’s Hadoop Cluster

MapReduce Introduction

16

Hadoop Distributed File System

» Files split into 64MB b/ocks
NameNode

» Blocks replicated across several
DataNodes (usually 3)

» Single NameNode stores metadata
- file names, block locations, etc

» Optimized for large files,
sequential reads

» Files are append-only

DataNodes

UNI
FREIBURG

MapReduce Introduction 17

Hadoop Architecture

JobTracker
+

NameNode

Master & Slaves architecture

v

Master

v

JobTracker schedules and
manages jobs

» TaskTracker executes individual
map() and reduce() task on each
cluster node

» JobTracker and Namenode as 5
well as TaskTrackers and TaskTracker @ TaskTracker
+ +
DataNodes _are placed on the T R
same machines

TaskTracker
|
DataNode

Slaves

UNI

FREIBURG

MapReduce Introduction 18

MapReduce Workflow

(1) Map Phase
- Raw data read and converted to key/value pairs
- Map() function applied to any pair

2) Shuffle Phase
- All key/value pairs are sorted and grouped by their keys

3) Reduce Phase

- All values with a the same key are processed by within the
same reduce() function

UNI

1ad00p

FREIBURG

MapReduce Introduction 19

MapReduce Workflow (2)

» Steps of a MapReduce execution
Map phase Shuffle & Sort Reduce phase
split o L N
split 2
split 3
split 4 output 1
split 5 _—
Input Intermediate Results Output
(HDFS) i i (Local) i i (HDFS)
» Signatures
o Map(): (in_key, in_value) > Llist (out_key, intermediate_value)

° Reduce(): (out_key, Llist (intermediate_value)) - Llist (out_value)

UNI

FREIBURG

MapReduce Introduction 20

MapReduce Programming Model

» Every MapReduce program must specify a Mapper and
typically a Reducer

» The Mapper has a map() function that transforms input
(key, value) pairs into any number of intermediate
(out_key, intermediate_value) pairs

» The Reducer has a reduce() function that transforms
intermediate (out key, list(intermediate value))
aggregates into any number of output (value’) pairs

UNI
FREIBURG

MapReduce Introduction 21

MapReduce Execution Details

» Single master controls job execution on multiple slaves
- Master/Slave architecture

» Mappers preferentially placed on same node or same rack as

their input block
- Utilize Data-locality > move computation to data

> Minimizes network usage

» Mappers save outputs to local disk before serving them to

reducers
- Allows recovery if a reducer crashes
- Allows having more reducers than nodes

UNI

MapReduce Introduction 22

FREIBURG

Word Count Example

» Problem: Given a document, we want to count the
occurrences of any word

» Input:
- Document with words (e.g. Literature)

» OQutput:

> List of words and their occurrences, e.g.
“Infrastructure” 12
“the” 259

UNI
FREIBURG

MapReduce Introduction 23

Word Count Execution

Input Map Shuffle & Sort Reduce Output

A the, 1 —ﬂ
brown, 1
the quick fox, 1 brown, 2
brown fox
Reduce fox, 2
- how, 1
now, 1
the fox ate | | the, 3
the mouse
— ate, 1
now, 1
brown, Reduce cow, 1
how now
mouse, 1
brown cow .
quick, 1

UNI
FREIBURG

MapReduce Introduction 25

An Optimization: The Combiner

v

A combiner is a local aggregation function for repeated
keys produced by same Mapper

Works for associative functions like sum, count, max

v

v

Decreases size of intermediate data

4

Example: map-side aggregation for Word Count

UNI

1ad00p

FREIBURG

MapReduce Introduction 26

Word Count with Combiner

Input Map Shuffle & Sort Reduce Output

A the, 1 —ﬂ
brown, 1
the quick fox, 1 brown, 2
brown fox
Reduce fox, 2
- how, 1
now, 1
the fox ate | | the, 3
the mouse
] ate, 1
now, 1
brown, Reduce cow, 1
how now
mouse, 1
brown cow .
quick, 1

UNI
FREIBURG

MapReduce Introduction 27

Fault Tolerance in MapReduce

1. If a task crashes:
> Retry on another node
- OK for a map because it has no dependencies
- OK for reduce because map outputs are on disk

- If the same task fails repeatedly, fail the job or ignore
that input block (user-controlled)

» Note: For these fault tolerance features to work,
your map and reduce tasks must be side-effect-

free

UNI
FREIBURG

MapReduce Introduction 28

Fault Tolerance in MapReduce

2. If a node crashes:
- Re-launch its current tasks on other nodes
> Re-run any maps the node previously ran

- Necessary because their output files were lost along
with the crashed node

UNI
FREIBURG

MapReduce Introduction 29

Fault Tolerance in MapReduce

3. If a task is going slowly (straggler):
- Launch second copy of task on another node
(“speculative execution”)
- Take the output of whichever copy finishes first, and

kill the other

» Surprisingly important in large clusters
- Stragglers occur frequently due to failing hardware,
software bugs, misconfiguration, etc
> Single straggler may noticeably slow down a job

A\

AN\ e
1adoop
\ ' MapReduce Introduction 30

UNI
FREIBURG

Further handy tools

Partitioners
> Assign keys to reduces
- Default: key.hashCode() % num_reducers

Grouping Comparators

> Sort keys within reduces

Combiners

- Local aggregation

Compression

> Supported compression types: zlib, LZO,...

Counters (global)
- Define new countable events

v

v

v

v

v

UNI
FREIBURG

MapReduce Introduction 31

Further handy tools (2)

» Zero Reduces

> If no sorting or shuffling required
> Set number of reduces to 0

» Distributed File Cache
- For storing read-only copies of data on local computers

UNI
|

FREIBURG

MapReduce Introduction 32

Agenda

1. Why MapReduce?

a. Data Management Approaches
b. Distributed Processing of Data

2. Apache Hadoop oo o

Hive Chukwa
(sQL) (Y EGE]I3Te)]

a. HDEFS H s MapReduce

$ § e 'E (Job Scheduling/Execution System)

o > =
b. MapReduce B
. N~ - (NoSQL)
c. Pi
g HDFS
d H Ive (Hadoop Distributed File System)
Hadoop Common

e . H BaS e (supporting utilities, libraries)

3. Programming MapReduce

a. MapReduce with Java
b. Moving into the Cloud

UNI
FREIBURG

MapReduce Introduction 33

Pig (Latin): Why?

» Many parallel algorithms can be expressed by a
series of MapReduce jobs

» But MapReduce is fairly low-level:
- must think about keys, values, partitioning, etc

» Can we capture common “job building blocks™

UNI
FREIBURG

MapReduce Introduction 34

Pig (Latin)

» Started at Yahoo! Research

» Runs about 30% of Yahoo!’s jobs
» Features:

- Expresses sequences of MapReduce jobs
Data model: nested “bags” of items

Provides relational (SQL) operators (JOIN, GROUP BY, etc.)
Easy to plug in Java functions
Pig Pen development environment for Eclipse

(o]

o

(o]

o

UNI
FREIBURG

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope@9.ppt

An Example Problem

» Suppose you have

user data in one file,

page view data in
another Filter by age

Load Pages

» and you need to find
the top 5 most visited

pages by users aged
18 - 25

Join on name
Group on url

Count clicks

Order by clicks

Take top 5

UNI
|

FREIBURG

MapReduce Introduction 36

In MapReduce

in I0Txeapcion; sapestas satStates ("0X7

-xtil.Rezaylists 1

.wtil.Itazates;

.xtil.LisT; 7 Te tha £zo@s prodeet and eollast tha valsas

= (stsing a1 : fimsm) |

-Paths
-ia.LlengWzitakla; "t L+ .7+ BEs
-io.Taxts 2t (nzll. new Téxtioatwall
r.io.Woitablas oK) s
L. ¥eitanlatempasanlay 3
. -FilaInpatFozmat; 1
-y FilautputFezmat; 3

4. Jorcon
Ee

,.
i
"

BTaTis 2lags Loadlsoined @xtends Mar
arants Mappes<la=t, Tawmt, Tawt, LongWsizanlasr |

Addddddaddlsddd
p

,.
o
"

Zesd.ZigesncarilalnpesTosmat,
. 2d . SaguancaFilalaty 2ty
.rra“-a: TaTInpeTEazmAT;

4

,.
I
B

. fizac Conma);
Stzing kay — 1ina.SobeTzing(fizatComma. Sacondfommals
drap Tha seat of tha sasssd, 1 den't nasd it aapmesa
lie =lasn MESamsla | ST pass 2 1 fas tha semkhinas/-adesas T2 Gwm ingtaad
aplic static 2lass LeadPages @xtends Mapfedeca3ass Taxt cnn, - naw Taxt (kayls

implements Mappes<lengWriTadle, Text, Text, Text> { ce.cellest (cutXey, new LongWsitable (1))

1

3.
3.
3.
3.
3.

BhbEEEEL LRI L E LY

=
=
=
=
s
=
=
=
=
=
2=
=
=
s
=
=
=
=
=
=
=

s
fx

public woid itakla k, Text wal, 1
._Jr-m_eua-:e <'Iax:, hx::- a2, pubilie statie class Batusslzls extends MaphoducaBlse
Rap . IoZxmaptisn | implamants Radusas<la=zt, L =itarlalompazanla,
E=11 tha n, ot Weitamlas |

5: ing line — val.teStszing(

pablic waid =aducal

nt
5: ing kay — 1ine.sad Taxt ka g

String valse - line.subet
Taxt cutEay - naw Tewt(key): futpatiollaz sitarlafempacanla, Weifablar oz
and an inddx 2 ThR valsd 82 wi know which £ Theows 1

Ad4 wp 21l cha valuas wa 2ae

I, ama foem
Taxt 2utVal - naw Tawt(
o _sallaet(swtXay, setVall;

"+ walual:

=5 axtands Map
Text, Text, Tewtr {

pebliz woid map(lengWsitanla k., Téxt wal, oo.2ellant (kay, Dew LongWsitanla (sam))
CutpotCellactes<Text, Text oo, 1
3 ws ICExzaptien | 1
Peblis statie elass Lazdelisks extants Mapiodssaiiss

1
i mplamanta zazanla, Weitabla, I la

i
ZizstComma + 1)

Steing kay - lina. swratsing(, fizatCommal;
Taxt cutEay - naw Taxt
Frazand an i'\...ax te the valws s = @ knew which fila
eama
Taxt oucVal — naw Text("2" + valua)
ce.collact (cutXey, cuwtVall;

1 static slass Limirflicks axtands Map

1 = Raduczas 1s, Text, L 18, Texcr {
Peplic aTiTic sliss Jein Sxtends MapRiducaiiid

Taxt, Taxt, Taat, Taxt> {

[p——

Cutputfollactes<leng¥zitabla, Taxts oz,
i

stoza it Culy cutput tha fizat 100 razorda

whils (zawst | < 103 1
3> z2.esllact(key,)
Li9T<STzings s@coend - Rew hooayList<itzings(ls 20anT+s e
1 je.
1 e
1 je
public static veld maia(Stsing[] asga) theows ICExcapticn { je-
1 2nf 1p - naw JenCen z a3l je
£iz8T.2dd(valoa.BukeTzing (1 .sa tiom¥ama("Load Fages™l; 1

.matln TFozmat.clas

2
alsa second.add (valud.suDetzing(

UNI

MapReduce Introduction 37

FREIBURG

In Pig Latin

Users = load ‘users’ as (name, age);
Filtered = filter Users by
age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Joined = join Filtered by name, Pages by user;
Grouped = group Joined by url;
Summed = foreach Grouped generate group,
count(Joined) as clicks;
Sorted = order Summed by clicks desc;
Top5 = limit Sorted 5;

store Top5 into ‘topSsites’;

UNI
FREIBURG

MapReduce Introduction 38

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope@9.ppt

Ease of Translation

Notice how naturally the components of the job translate into Pig Latin.

Load Users Load Pages

Users = load ..
\iFiltered = filter ..

Pages = load ..
>Joined = join ..
WGr‘ouped = group ..

Summed = .. count()..
WSor‘ted = order ..

Top5 = limit ..

Filter by age

Order by clicks

Take top 5

UNI
|

FREIBURG

MapReduce Introduction 39

Ease of Translation

Notice how naturally the components of the job translate into Pig Latin.

Load Users Load Page

— Users = load ..
«— Filtered = filter ..

. \\Pages = load ..

Group on url ——— Grouped = group ..

//////vSummed = .. count()..

Count clicks Sorted = order ..

Top5 = limit ..
Order by clicks /

Take top 5

Filter by age

-~

UNI
|

FREIBURG

MapReduce Introduction

40

Agenda

1. Why MapReduce?

a. Comparison of Data Management Approaches

b. Distributed Processing of Data

2. Apache Hadoop

kS MapReduce
a " H D FS g)—% (Job Scheduling/Execution System)

¥ T
b. MapReduce 88

N ~ (NoSQL)
c. Pig HDFS
d H . (Hadoop Distributed File System)

. Iive
Hadoop Common
(supporting utilities, libraries)

e. HBase

3. Programming MapReduce

a. MapReduce with Java
b. Moving into the Cloud

UNI
|

FREIBURG

MapReduce Introduction 41

Hive

» Developed at Facebook
» Used for majority of Facebook jobs

» Data Warehouse infrastructure that provides data
summarization and ad hoc querying on top of
Hadoop

- MapReduce for execution
- HDFS for storage

» “Relational database” built on Hadoop

- Maintains list of table schemas

> SQL-like query language (HQL)

> Supports table partitioning, clustering, complex
data types, some optimizations

SHIVE

MapReduce Introduction 42

UNI
FREIBURG

Sample Hive Query

» Find top 5 pages visited by users aged 18-25:

SELECT p.url, COUNT(1) as clicks

FROM users u JOIN page views p ON (u.name = p.user)
WHERE u.age >= 18 AND u.age <= 25

GROUP BY p.url

ORDER BY clicks

LIMIT 5;

HIVE

MapReduce Introduction 43

UNI
FREIBURG

UNI

FREIBURG

HBase

Clone of Big Table (Google)

Data is stored “Column-oriented”
Distributed over many servers
Layered over HDFS

Strong consistency (CAP Theorem)

Scalable up to billions of rows x millions
columns

of

T T\,
©
HBASE

MapReduce Introduction 44

And many others ...

» Sqoop
- Tool designed to help users of large data import existing
relational databases into their Hadoop cluster
> Integrates with Hive

» Zookeeper
- High-performance coordination service for distributed
applications
» AVro
- Data serialization system

» Chukwa

- Data collection system
- Displaying, monitoring and analyzing log files

UNI
FREIBURG

MapReduce Introduction 45

Takeaways

» By providing a data-parallel programming model,
MapReduce can control job execution in useful ways:
- Automatic division of job into tasks
- Automatic partition and distribution of data
- Automatic placement of computation near data
- Recovery from failures & stragglers

» Hadoop, an open source implementation of
MapReduce, enriched by many useful subprojects

» User focuses on application, not on complexity of
distributed computing

UNI
|

FREIBURG

MapReduce Introduction 46

Agenda

1. Why MapReduce?

a. Comparison of Data Management Approaches
b. Distributed Processing of Data

2. Apache Hadoop

a. HDEFS

b. MapReduce
c. Pig

d. Hive

e. HBase

3. Programming MapReduce

a. MapReduce with Java
b. Moving into the Cloud

UNI
|

FREIBURG

MapReduce Introduction 47

3. Programming MapReduce

22 First steps with Hadoop

UNI
FREIBURG

MapReduce Introduction 48

Getting started with Hadoop

Hadoop Distributions
- Apache Hadoop
> Cloudera’s Hadoop Distribution (recommended)

o

v

Installing Hadoop on Linux
> Follow CDH3 Installation Guide
Hadoop within a Virtual Machine

> Cloudera's Hadoop Demo VMWare Image
- Ready to use Hadoop Environment

Hadoop in the Cloud

- Amazon’s Elastic MapReduce

4

4

v

UNI
FREIBURG

MapReduce Introduction 49

New MapReduce API

» Since Hadoop 0.20

- 0L ——org-apache-hadoop-mapred.®
o NEW: org.apache.hadoop.mapreduce.*

» Note

> Many available examples are written using the old API
> One should not mix both

> Strongly recommended: new API!

UNI
FREIBURG

MapReduce Introduction 50

UNI

FREIBURG

Web Interfaces: HUE

‘Hi”dbis I

38 Shortcuts

{user /dbis = File Browser @PE®

Lo

f £:¢My Home |_INew Directory | |

Name Group Permissions Date

supergroup drwxr-xr-x April 15, 2011 3:55 p.m.
dbis drwxr-xr-x March 9, 2011 1:19 p.m.
dbis drwxr-xr-x March 8, 2011 4:37 p.m.

[=2) RDFPath

=2 data

MapReduce Introduction

55

Web Interfaces: JobTracker

H— H ‘Quick Links
sydney Hadoop Map/Reduce Administration
State: RUNNING
Started: \Wed Apr 06 15:28:21 CEST 2011
Version: 0.20.2-COH3B4, r3aa7c91592ea1c53f3a%913a581dbfedfebeS8bfe
Compiled: Men Feb 21 22:40:18 UTC 2011 by root
Identifier: 201104061528
Cluster Summary (Heap Size is 7.12 MB/888.94 MB)
Running | Running . Occupied Reserved Map Reduce)
Total Occupied Reserved Avg. Blacklisted | Excluded
Map Reduce L Nodes Reduce Reduce Task Task
Tasks Tasks Submissions Map Slots Slots Map Slots Slots Capacity | Capacity Tasks/Node Nodes Hodes
0 0] 9 0]] 0 36 18 6.00 a a

Scheduling Information

Queue Name | State Scheduling Information

default running | MA

Filter (Jobid, Priority, User, Name)
Example: "user:smith 3200 will fitter by “smith” anhy in the user field and "3200" in all fizlds

Running Jobs

none

Retired Jobs

none

Local Logs

http://masterIP:50030/jobtracker.jsp

UNI

FREIBURG

MapReduce Introduction 56

UNI

FREIBURG

Web Interfaces: NameNode

NameNode 'sydney.informatik.privat:8020’

Started: ‘Wed Apr 06 15:24:30 CEST 20N

Version: 0.20.2-CDH3B4, r3aa7c91592ea1c53f3a913a58 1dbfcdfebe 98 bfe
Compiled: Mon Feb 21 22:40:16 UTC 2011 by root

Upgrades: There are no upgrades in progress.

Browse the filesystem
Namenode Logs

Cluster Summary

2745 files and directories, 10238 blocks = 12983 total. Heap Size is 19.858 MB / 385.94 MB (2%)

Configured Capacity : 240878
DF S Used : 1.65TH
Non DF S Used : 1237TB
DFS Remaining : 2115TB
DF S Used% : 6.86 %
DF S Remaining® : 87.85 %
Live Nodes . 9
Dead Nodes 0
Decommissioning Nodes :]
Number of Under-Replicated Blocks 0

NameNode Storage:

Storage Directory Type State

/hadoop-dirt/hdfsiname IMAGE_AMD_EDITS | Active

Nol2/hadoop-dir2/hdfsiname IMAGE_AND_EDITS | Active

Cloudera's Distribution for Hadoop, 2011.

http://masterIP:50070/dfshealth.jsp

MapReduce Introduction 57

Agenda

1. Why MapReduce?

a. Comparison of Data Management Approaches
b. Distributed Processing of Data

2. Apache Hadoop

a. HDEFS

b. MapReduce
c. Pig

d. Hive

e. HBase

3. Programming MapReduce

a. MapReduce with Java
b. Moving into the Cloud

UNI
|

FREIBURG

MapReduce Introduction 58

Amazon Elastic MapReduce

Provides a web-based interface and command-line
tools for running Hadoop jobs on Amazon EC2

Data stored in Amazon S3
Monitors job and shuts down machines after use
Small extra charge on top of EC2 pricing

v

v Vv

>

,,,,,
\\\\\\\\\\\
\\\\\

UNI
FREIBURG

MapReduce Introduction 59

Elastic MapReduce Workflow

Create a New Job Flow Cancel |x

O

DEFINE JOB FLOW

Creating a job flow to process your data using Amazon Elastic MapReduce is simple and quick. Let's begin by giving your job flow a name

and selecting its type. If you don't already have an application you'd like to run on Amazon Elastic MapReduce, samples are available to
help you get started.

Job Flow Name*: My Job Flow

The name can be anything you like and doesn't need to be unique. It's a good idea to name the job flow something
descriptive.

Type*: () Streaming
A Streaming job flow allows you to write single-step mapper and reducer functions in a language other than java.

() Custom Jar {advanced)

A custom jar on the other hand gives you more complete control over the function of Hadoop but must be a
cormpiled java program. Amazon Elastic MapReduce supports custom jars developed for Hadoop 0.1B.3.

() Pig Program

Pig is @ SQL-like languange built on top of Hadoop. This option allows you to define a job flow that runs a Pig script,
or set up a job flow that can be used interactively via SSH to run Pig commands.

() sample Applications

Select a sample application and click Continue. Subsequent forms will be filled with the necessary data to create a
sample Job Flow.

[Word Count (Streaming) |_H Waord count is @ Python application that counts occurrences of each word
in provided documents. Learn more and view license

e

UNI

FREIBURG

MapReduce Introduction

UNI

FREIBURG

Elastic MapReduce Workflow

Create a New Job Flow Cancel |x

O

SPECIFY PARAMETERS

Specify Mapper and Reducer functions to run within the Job Flow. The mapper and reducers may be either (i} class names referring to a
mapper or reducer class in Hadoop or (ii} locations in Amazon S3. (Click Here for a list of available tools to help yvou upload and download
files from Amazon 53.) The format for specifying a location in Amazon 53 is bucket_name/path_name. The location should point to an
executable program, for example a python program. Extra arguments are passed to the Hadoop streaming program and can specify things
such as additional files to be loaded into the distributed cache.

Input Location*: elasticmapreduce/samples/wordcount/input

The URL of the Amazon 53 Bucket that contains the input files.

Output Location*: <yourbucket>/wordcount/output/2009-08-19

The URL of the Amazon 53 Bucket to store output files. Should
be unigue.

Mapper*: elasticmapreduce/samples/wordcount/wordSplitter. py

The mapper Amazon s3 location or streaming command to
execute.

Reducer*: aggregate

The reducer Amazon s3 location or streaming command to
execute.

Extra Args:

< Back * Required field

MapReduce Introduction

61

UNI

FREIBURG

Elastic MapReduce Workflow

Create a New Job Flow Cancel | x

CONFIGURE ECZ INSTANCES

Enter the number and type of EC2 instances you'd like to run your job flow on.

Mumber of Instances®*: 4

The number of EC2 instances to run in your Hadoop cluster.
If wou wish to run mare than 20 instances, please complete the limit request form.

Type of Instance*: | small (m1.small) -

The type of EC2 instances to run in your Hadoop cluster (learn more about instance types).

¥ Show advanced options

“))
< Back Required field

MapReduce Introduction

62

Elastic MapReduce Workflow

i‘-." Contact Us 2 Create an AWS Account
-
Eramazon
27 webservices” About AWS Products Solutions Resources Support Your Account
Home = Resources - AWS Management Conscle BETA = Amazon Elastic MapReduce Welcome, Rad Lab | settings | Sign Out
Amazon Elastic Amazon
‘ AmazoniEcl ‘ MapReduce | CloudFront |

Your Elastic MapReduce Job Flows

Region: | F= Us-East &% Greate New Job Flow || @ Terminate [13 showHide || = Refresh || & Help

Viewing: | All 5‘ l€ & 1tolofllobFlows 5 5

Name State Creation Date Elapsed Time Normalized Instance Hours
My Job Flow 44 STARTING 2009-08-19 14:50 PDT 0 hours 0 minutes V]
1 Job Flow selected
& Id: j-46IL0YQ7ZPH1 Creation Date: 2009-08-19 14:50 PDT m
Name: My Job Flow Start Date: -
State: STARTING End Date: -
Last State Change Reason: Starting instances
Availability Zone: us-east-1b Instance Count: 4 :
— = i — = - 3 YAk .

© 2008 - 2009, Amazon Web Services LLC or its affiliates. All right reserved. Feedback Support Privacy Paolicy Terms of Use

UNI

MapReduce Introduction 63

FREIBURG

Takeaways #2

» MapReduce programming model hides the
complexity of work distribution and fault tolerance

» Principal design philosophies:
- Make it scalable, so you can add hardware easily

> Make it cheap, lowering hardware, programming and admin
costs

» MapReduce is not suitable for all problems, but
when it works, it may save you quite a bit of time

» Cloud computing or Cloudera makes it
straightforward to start using Hadoop at scale

UNI
FREIBURG

MapReduce Introduction 64

Research@DBIS

» Hadoop Cluster with 10 machines & 30 TB Storage

» Distributed Processing of Semantic Data
- Storing strategies for RDF Graphs in HDFS, HBase, Cassandra
> Mapping SPARQL queries to PIG or directly MapReduce

- Executing Path queries with PIG or directly MapReduce for
investigating e.g. social networks

UNI
FREIBURG

MapReduce Introduction 65

Resources

» Hadoop

o http://hadoop.apache.org/core/
Pig

> http://hadoop.apache.org/pig
Hive

o http://hadoop.apache.org/hive

Cloudera’s Distribution
o http://www.cloudera.com/

Video tutorials
o http://www.cloudera.com/hadoop-training

Amazon Web Services
o http://aws.amazon.com/

v

v

v

v

v

UNI
|

FREIBURG

MapReduce Introduction 66

http://hadoop.apache.org/core/
http://hadoop.apache.org/pig
http://hadoop.apache.org/hive
http://www.cloudera.com/
http://www.cloudera.com/
http://www.cloudera.com/
http://www.cloudera.com/hadoop-training
http://www.cloudera.com/hadoop-training
http://www.cloudera.com/hadoop-training
http://www.cloudera.com/hadoop-training
http://aws.amazon.com/

Resources (2)

Hadoop: The Definitive Guide, Second Edition
Tom White
O'Reilly Media, 2010

Data-Intensive Text Processing with MapReduce
Jimmy Lin, Chris Dyer, Graeme Hirst
Morgan and Claypool Publishers, 2010

Cluster Computing and MapReduce Lecture Series
Google, 2007: Available on Youtube

Verarbeiten groRer Datenmengen mit Hadoop
Oliver Fischer
Heise Developer, 2010: Online

T
A\ A
‘‘‘‘‘‘‘‘‘
\\\\\\

UNI
FREIBURG

MapReduce Introduction 67

New MapReduce API

2> Additional slides

UNI
|

FREIBURG

MapReduce Introduction 68

UNI

FREIBURG

New API: Top Level Changes

» Methods can throw InterruptedException as well
as IOException
» Configuration instead of JobConf Objekt

» Library classes are moved to mapreduce.lib

verschoben
> {input, map, output, partition, reduce}.”

MapReduce Introduction 69

Mapper

» Map funktion
- map (K1 key, V1 value,

OutputCollector<k2,V2> output, old API
Reporter reporter)
- map(K1 key, V1 value, Context context) new API
» Close
o Close()

o cleanup(Context context)

» Output
o Qutput.collect(K,V)
o Context.write(K,V)

UNI
|

FREIBURG

MapReduce Introduction 70

MapRunnable

» Using mapreduce.Mapper

c void run (RecordReader<K1,V1> input,
OutputCollector<kK2,V2> output,
Reporter reporter)

o void run (Context context)

UNI
|

FREIBURG

MapReduce Introduction 71

Reducer & Combiner

» Reduce funktion
o void reduce (K2, Iterator<V2> values,
OutputCollector<K3,V3> output)

o void reduce (K2, Iterable<V2> values,
Context context)

» ITteration

o while (values.hasNext() {
V2 value = values.next(); .. }

o for (V2 value: values) { .. }

UNI
|

FREIBURG

MapReduce Introduction 72

Submitting Jobs

» JobConf + JobClient are replaced with Job

» Job Constructor

° job = new JobConf(conf, MyMapper.class)
job.setJobName(,,job name*)

> job = new Job(conf, ,,job name®)
o job.setJarByClass(MyMapper.class)

UNI
|

FREIBURG

MapReduce Introduction 73

Submitting Jobs (2)

» Further Properties
> Job has getConfiguration

o FileInputFormat in mapreduce.lib.input
c FileOutputFormat in mapreduce.lib.output

» Ausfiihrung

o JobClient.runJob(job)
o System.exit(job.waitForCompletion(true)?0:1)

UNI
FREIBURG

MapReduce Introduction 74

